J 2
o7 >

CENTER FOR
COMPUTER AND INFORMATION SCIENCES
AND

DIVISION OF ENGINEERING

COMPUTATIONAL WORK AND EFFICIENT COMPUTATION
ON GENERAL PURPOSE MACHINES®

by

J. E. Savage

BROWN UNIVERSITY

Providence

Rhode Island

COMPUTATIONAL WORK AND EFFICIENT COMPUTATION
ON GENERAL PURPOSE MACHINES®

by

J. E. Savage

o
9%

COMPUTATIONAL WORK AND EFFICIENT COMPUTATION ON GENERAL PURPOSE MACHINES®

by

J. E. Savage
Division of Engineering
Brown University
Providence, R. I., U.S.A. 02912

ABSTRACT

A new measure of computational work which was introduced recently
is applied to three problems: 1) measurement of the work required to
fetch from a store, 2) determination of operating principles for a
typical general purpose machine on the basis of the computing power
of its storage units and 3) formulation of a minimization problem
which provides criterea for determining the cost of a mismatch between
storage units. Computational work is a measure of the equivalent

number of logical operations performed by machines.

. This work was supported by grants NGRUC-002-082 and NGRH0O-002-080 from

the Nationzl Aeronautics and Space Administration and grant GK-13162
from the National Science Foundation.

Computational Work and Efficient Computation
on General Purpose Machines
by
J. B. Savage

Brown University
Providence, Rhode Island

1. Introduction

In a recent paper [1], a measure of "computationél work" introduced earlier
in the study of error-correcting decoders [2] has been applied to the computation
of finite functions on general purpose machines. In [1] it is shown that a pro-
duct relation exists between the storage and time required to compute finite func-
tions and that the product must be large for complex functions. 1In that paper we
also give a useful measure of the "computing power" of a storage device and find
expressions for this quantity for random-access, tape and disk (or drum) storage
units, Using these results, it is shown that a clear ordering of devices exists
on the basis of the number of cycles required to compute functions wﬁen no storage
limit is imposed. |

In this article, we review the definitions of computational work and compu-
ting‘pOWer and illustrate one use of work by bounding the work required to fetch
data from a store. Ve also calculate the computing power of storage devices in
a typical computing faculty and demonstrate that the power of disk and drum are
so much smaller than that of core that marked improvements in run times may be
possible through changes in system operating principles. In addition, we consider
a machine with a main and an auxiliary memory and consider the minimization of
run time subject to a restriction on the amount of computationgl work required.
For the type of main and auxiliary memory considered, it is always desirable to-
run jobs in main memory when sufficient storage capacity is available. When
capacity is limited, we give conditions under which the penalty for use of aux-

jliary storage is large and these conditions involve a comparison of a work to

storage ratio with system parameters.
We expect that the use of the computational work measure will lead to a
clearer understanding of exchanges possible between storage, time and other para-

meters and that i1t will lead to more efficient use of machines.

2. Work and Computing Power

Model a general purpose (GP) machine by a collection of k sequential ma-
chines Sl . == Sk each with its own clock. We assume without excessive loss
of generality that the clock cycle for each machine is a multiple of some basic
cycle. Thus, the model preserves the identity of the several components of a GP
machine and approximates its asynchronous character.

We assume that each of the k sequential machines excutes a fixed number of
cycles to do its share of a computation and note that the complex defines a function
f which is a map from the initial states of the machines (if they can be freely
chosen) and external inputs (if they are provided) to the set of external outputs
produced sequentially by the complex. We say that "f is computed by S. , -- ,

1

"
Sk .

To measure the amount of work réquired to compute f , we create a model for
each sequential machine using logic elements from some universal set Q and using
compatible memory cells which have individual inputs and outputs and which act as
delay units. If a model for Si contains Xi logic elements and if Si executes
T; cycles, then we have [1]

k

W=1I X,T. 2 C.(f) (1)
=1 i1 Q

i
where CQ(f) is the minimum number of logic elements from required to realize

f with a combinational (logic) circuit.

We call W the computational work done by the models for Sl 5 = Sk since

it is an equivalent number of logic uses. It should be noted that £ which are

-3 -

complex {(for which CQ(f) is large) will require a large W , and for a single
sequential machine this means the XT product must be large. It should also be
noted that the storage media employed in the models can do no work and that all the
work is done by logic elewents.

If one of the sequential machines is a bulk storage device, we say that it

has computing power P if P is the minimum number of logic elements required to

model the device with elements from Q . If the device has a small control (a CPU,
perhaps) with Xo logic elements and if it is used to compute f in a fixed number
of cycles T , then

(xo + P)T > CQ(f) (2)

If P > Xo , we find that a product inequality holds on P and T .

Expressions for the computing power of random-access, tape, disk and drum
units have been obtained [1] under the assumptions that © is the set of all 2-
input binary connectives. If the random-access and tape units have S bits of
storage and if the tape, disk and drum units can have acsess to any one of m bits

of information in one cycle (the time required to access one bit in parallel), then

S <P < 9§

ra -
S <P, <98+ alogs (3)
m < Pd < 5m + Blogm

where o and B are constants and P. 1is the power of drum or disk, whichever

d
is appropriate. Ve note that Pra and Pt are proportional to tetal storage
since in the model at least one logic element must be used per binary cell to pro-
vide access. On the other hand Pd is proportional to m since the disk and drum
units always rotate in the same direction and access is only required to cells
under the heads. The terms o logS and Blogm measure the logic required in ad-

dressing circuits.

Combining (2) and (3), we find that ST is bounded below approximately

- b -

by CQ(f) for a small control on tape and random access machines. This is
the kind of exchange inequality which programmers have found to hold empiri-
cally. It is important to note however, that ST must increase with increasing
complexity CQ(f).

Combining - (2) with (3) for drum and disk and using additional arguements
for tape machines we have

Tt > / CQ(fj
_ 9m(1+e,)

1 ()

T, > CQ(f)

5m(l+82)

when their controls have a number of equivalent logic eleﬁents small by compari-
son with m and total storage, in the case of the tape machine. Combinational

complexity CQ(f) for functions of n variables can be very large; in fact it

can be nearly exponential in n, Thus, T, and T, can be very large with

t da

the lower bound on Td exponentially larger than that on Tt' By contrast

with these results, any function of n variables can be computed on a random
access machine of sufficient storage capacity in a number of cycles Tra
proportional to n using "table look-up'. Consequently, a clear ordering of
these storage types exists for functions whose complexity is large by compari-
son with n.

5 T Sk have cyéle times Tys =775 Ty Tﬂen the maximum

amount of work which they can do in t seconds, W(t), if Xi is the minimum

Let Sl’ S

number of equivalent logic elements in Si’ is

(5)

HE e
fomd

wit) = Xi t

Te
1

fese

It Si is a bulk storage unit of computing power Pi and a small control with

Xci equivalent logic elements, then

vy

qit) =

o R
ot

'x .+ P, (6)
kY T
\ / ‘

Y =
i 1

and Pi/Ti, or the normalized computing power of the i-th storage unit, is

a measure of the rate at which Si can do work. The larger Pi/ri, the

smaller will t need be to do a fixed amount of computational work.

3. The Work Required to Fetch

Assume that a storage device has M locations each containing a b bit
word. Then, an instruction to fetch the work in location 7, wj, involves
the calculation of a function £(3; Wys Wos ===, wm) = wj. This should be

viewed as a function of J with w,, --,w, fixed, as would be the case in a

l’
read-only memory. MNte that the complexity of f depends on the values of

M

Wis T7s Wy " since if they all have the same value no work is required to

compute f; the output of the minimal eircuit is constant.
The number of different fetch functions is clearly bM or the number

of = ways to choose Wis Wy =5 W Using just this fact, we can apply a

M

counting argument given in [1] to lower bound CQ(f) by

Mb (1-¢) ' (7)
g, Mb

c(f)>1
2

bt

for almost all fetch functions, € fixed, o<e<l, and the set of 2-input
binary gates. We also assume that the addresses are represented in binary
form using log2M bits.

Returning now to the expressions for computing power in (3) and the
inequality of (2), we see that the number of cycles required to compute
£(5; Wis "7 WM) on a random access machine is lower bounded by 1 while the
lower bound for drum and disk grows almost linearly with Mb. This is consistent

with practical methods of fetching from these units and confirms the accuracy

of the results.

4. A Typical GP Machine

Consider a machine which has three types of storage, core (or random access)
disk and drum. Using typical values for parameters of these units, vwe determine
their relative computing powers and deduce certain principles for thier efficient
use,

. 6 . .

Let the core contain SC = 4 x 100 bits of storage and have cycle time

T, = 10—6 sec. Let the drum have 200 tracks, each with a capacity of 1.6 x 105

bits arranged serially and rotational speed of 3600 rpm, The bits on each track

are arranged serially so that the number of accessible bits is = 200 and the

Map

cycle length is Tap = 1/(60 x 1.6 x 105) sec, = 107 . Let the disk unit have 16

disks each with 4000 tracks and each track containing 5.8 x 10" bits organized
in serial. Let each disk rotate at 3600 rpm. Then, the number of accessible

tracks or bits = 6.4 x lO'4 » the cycle length 1, = 3 X 10“7 -sec, and the

My d
total storage capacity Sd = 3.7 % lO9 bits. The tracks on a disk are arranged
in groups called cylinders and the time required to move a head between adjacent
cylinders we assume to be 24 x lO.3 sec. and between extremes cylinders on a
disk to be 170 x 10> sec. These numbers should be compared to 16 x 1078 sec.,
which is the time required to read a complete track or cylinder.

To compute the normalized computing power of the units, we use the upper bounds
given in (3) and neglect the additive terms proportional to long . Then, for core,

drum and disk we have

f’_g = 36 x 1072 Fap = 10" d= 10*2 (8)
e Tdr d

g

respectively. Thus, the core storage unit can do work at a rate which is 36 times

that of disk and Z,600 times that of drum. In addition, P/t

d may be reduced

d

markedly, in practice, because of the time required to move reading heads or disk;

an additional loss of one order of magnitude is possible,.

-7 -

On the basis of these célculations, it appears there is serious mismatch be-
tween storage devices and that jobs might be run as much as 36 times faster if
they could be executed completely in core with no use made of disk or drum., If it
were known that a factor of 30 or even 10 in run time is the price to be paid for
the flexibiiity now available in many computing facilities (which requires the use
of the inexpensive storage available on drum and disk), then many of these fac-
ilties might exchange drum and disk for core storage and small in-core operating
systems,

Suppose now that the disk unit in our typical facility is exchanged for a one
microsecond core unit with 1/1,000 of the storage capacity (at no increase in co;t).
The nmew core unit would then have about &4 x lO6 bits of storage or the capacity
of the old core unit and a normalized computing pswer equal to that of the old core.
If more core storage could be purchased, the normalized computing power would be
proportionately increased and run time decreased.

These observations and the inequalities of (4) suggest that the use of a
virtual memory machine may result in gross inefficiencies on jobs which are complex.
This follows from the small normalized computing power of the auxiliary storage units
and the fact that the serial organization of data in them necessitates a number of
cycles which may grow linearly with the complexity of jobs. It does not suggest,
however, that virtual memory machines are inefficient when the job mix has a uniform

cemplexity.

5. Work on a GP Machine with 2-Level Storage

Assume that a GP machine with main and auxiliary storage units of different
cycle lengths and computing powers is used to compute a function f which requires
a work g . Under the assumption that £ is computed in a batch mede we find
approximate expressions for the minimum number of main memory cycles required to

compute f . These expressions are obtained both when the capacity of main memory

is limited and when it is not,

Let main memory have cycle length L and computing power Pm . Let the
corresponding parameters of auxiliary memory be T and Pa and define p = Ta/Tm
Let the main and auxiliary memories execute Tm and Ta cYcles, respectively, to
compute £ ., Then the total time in main memory cycles, T , and the work done,

W , to compute f are given by

T = Tm + pTa
(9)
W=PT +PT
m m aa
Suppose also, that main memory has a capacity of M bits and that S_ bits, of

f

program must be accessed to compute f . Then, if S_ <M and if the program can

£

be put into main memory, the minimum value of T under the condition that W = Wf .

is
(1) {Wf/ Fn Fn 2 Po/0
in Wf/Pa Pm Pa/p

iv

b\ (10)

1A

Thus, if the normalized computing power of main memory exceéds that of auxiliary
memory, the function should be computed entirely in main memory and in auxiliary
memory otherwise. Thig résult is not very surprising.

Now suppose that M < Sf and Pm > Pa/p so that f would be computed in
main memory if that were possible. But this is not possible since the program
for f cannot fit into main memory and }t implies that Ta > (Sf - M)/b where

b is the number of bits which can be read from auxiliary memory in one cycle.

With this restriction on T and assuming that W = Wf , the minimum value of T ,

L2 e (3¢ "M)(p-_P_a>
min - Pm b P

m (11)
The penalty for use of auxiliary memory will be large if the second term in the

right hand side of (11) is much larger than W_/P_ . If p is much larger than
f'm

Pa/Pm , which is it for our typical machine described above, then the penalty is

large if

wf<<p3<l_%> (12)
S b £

-9 -

ordeck 5

Again if S_ >> M , we compare Wf/Sf with me/b Ais equal to 5.4 x 107 for

£
disk

o}

can read simultaneously. Thus, if the work per bit of storage Wf/Sf is less
5 . sqs . .
than 107 , the number of cycles required because auxiliary storage is used will

be much larger than the number necessary when only main memory is used.

6. Conclusion

Through the use of computational work we have exhibited that the rate at
which work can be dome by storage devices can lead to mismatches between units
which can result is gross inefficigncies. We have also shown that the work per
bit of storagé required to compute a funcion can be used to measure the penalty

that must be incurred through use of auxiliary storage. If the work per bit is

uxiliary storage since b = 20 is the number of tracks from which the unit

large ,the penalty is small. We have also measured the work required to fetch from

a store and shown that this leads to lower bounds on the number of cycles re-
quired to fetch a word in random-access and disk or drum units which is in agree-
ment with practice.

Computational work and the notion of efficiency which it implies should be

useful in machine design and use.

REFERENCES

J. E. Savage, "Computation on Finite Machines," Submitted to JACM,
September, 1970,

J. E. Savage, "The Complexity of Decoders: Part II: Computational work
and Decoding Time," to be published, IEEE Transactions on Information
Theory, January, 1971,

